Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(1): 6-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177930

RESUMO

The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.


Assuntos
Taxa de Mutação , Neoplasias , Humanos , Mutação , Neoplasias/genética , Sequência de Bases , Nucleotídeos
2.
Am J Hum Genet ; 109(5): 953-960, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460607

RESUMO

We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Neoplasias Uveais , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Endodesoxirribonucleases/genética , Predisposição Genética para Doença , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias Uveais/genética
4.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651586

RESUMO

Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.


Assuntos
Antígenos de Neoplasias/imunologia , Melanoma/imunologia , Proteínas ras/imunologia , Linhagem Celular Tumoral , Antígenos HLA-A/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas ras/genética
5.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299056

RESUMO

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Concanavalina A/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Linfócitos/metabolismo , Mitógenos/farmacologia , Fosfatidilinositol 3-Quinases/química , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Apoptose , Proteínas Reguladoras de Apoptose/genética , Autofagia , Glicólise , Humanos , Linfócitos/efeitos dos fármacos , Via de Pentose Fosfato , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais
6.
Nat Rev Cancer ; 20(10): 555-572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778778

RESUMO

A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.


Assuntos
Predisposição Genética para Doença , Mutação , Neoplasias/genética , Oncogenes , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Genômica/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/terapia , Transdução de Sinais , Relação Estrutura-Atividade
7.
Nature ; 583(7815): 265-270, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581361

RESUMO

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Assuntos
Segregação de Cromossomos/genética , Evolução Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animais , Reparo do DNA , Replicação do DNA , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Mutação , Neoplasias/patologia , Seleção Genética , Transdução de Sinais , Troca de Cromátide Irmã , Transcrição Gênica , Quinases raf/metabolismo , Proteínas ras/metabolismo
9.
Bioinformatics ; 35(22): 4788-4790, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228182

RESUMO

MOTIVATION: Identification of the genomic alterations driving tumorigenesis is one of the main goals in oncogenomics research. Given the evolutionary principles of cancer development, computational methods that detect signals of positive selection in the pattern of tumor mutations have been effectively applied in the search for cancer genes. One of these signals is the abnormal clustering of mutations, which has been shown to be complementary to other signals in the detection of driver genes. RESULTS: We have developed OncodriveCLUSTL, a new sequence-based clustering algorithm to detect significant clustering signals across genomic regions. OncodriveCLUSTL is based on a local background model derived from the simulation of mutations accounting for the composition of tri- or penta-nucleotide context substitutions observed in the cohort under study. Our method can identify known clusters and bona-fide cancer drivers across cohorts of tumor whole-exomes, outperforming the existing OncodriveCLUST algorithm and complementing other methods based on different signals of positive selection. Our results indicate that OncodriveCLUSTL can be applied to the analysis of non-coding genomic elements and non-human mutations data. AVAILABILITY AND IMPLEMENTATION: OncodriveCLUSTL is available as an installable Python 3.5 package. The source code and running examples are freely available at https://bitbucket.org/bbglab/oncodriveclustl under GNU Affero General Public License. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Software , Análise por Conglomerados , Genômica , Humanos
10.
Mol Cell Biochem ; 448(1-2): 187-197, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29435871

RESUMO

Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phytohemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K-Akt pathway inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating both pathways to target complex diseases involving the activation of the immune system.


Assuntos
Regulação da Expressão Gênica/imunologia , Ativação Linfocitária , Fosfatidilinositol 3-Quinases/imunologia , Fosfofrutoquinase-2/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fito-Hemaglutininas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...